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Abstract

We review the Hubbard model and its extensions as a framework to describe electron correlation
and the Mott metal-insulator transition. Starting from the atomic and band limits, we explore the
emergence of Hubbard sub-bands and the Mott transition through Hubbard-I decoupling. The strong-
coupling expansion leads to the ¢-J model, highlighting spin-exchange mechanisms. We then study
the extended Hubbard model with emphasis on orbital physics and transition metal oxides. The role
of super-exchange, charge-transfer effects are discussed in relation to real materials. Finally, the
Dynamical Mean Field Theory (DMFT) approach is introduced to capture certain features of the
HUbbard model, including emergence of sub-bands, the evolution of spectral weight.

Contents
1 Introduction 1
2 The Hubbard model 2
2.1 Hubbardsub-bands . . . . . .. .. . ... 4
2.2 The Hubbard-Idecoupling . . . . . . . . . . . . . . . i 4
3 Mott-Hubbard Transition 5
3.1 Phasediagram: U/t vSmn . . . . . .. o 7
4 Solving the Hubbard Model: Large U/t Limit 7
5 The t-J model 9
6 Many-Body Approach: Extended Hubbard Model 10
7 Hubbard Model: Orbital Ordering and Orbital Degeneracy 11
8 Mott Transition in Transition Metal Oxides 13
9 Super-exchange Mechanism 14
9.1 Charge Transfer Insulator vs Mott-Hubbard Insulator . . . . . .. ... ... ... ... 16
9.2 Zaanen-Sawatzky-Allen Phase Diagram . . . . . ... ... ... ... ......... 17
10 Dynamical Mean Field Theory 17
11 Green’s Function Calculation for Hubbard model in DMFT 19
12 Spectral Weight Transfer 20
13 Conclusion 21

1 Introduction

Metal, insulator and their characterization play an important role in condensed matter physics. We
know in the absence of any potential, electrons behave as free particles and form a continuum of energy
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states. However, in a crystalline solid, the presence of a periodic potential due to the lattice leads to the
formation of energy bands. We charecterize metal and insulator in Band theory by the position of Fermi
level. If the Fermi level lies within an energy band, the system behaves as a metal. In such a case, the
density of states at the Fermi level is nonzero, i.e., p(er) # 0. Conversely, if the Fermi level lies within
a band gap, the system is a band insulator, characterized by a vanishing density of states at the Fermi
level: p(ep) = 0.
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Figure 1: Schematic comparison of metallic and insulating band structures.

To quantify electron filling in a lattice, consider the electron density defined as

B Number of electrons B N

Number of sites L~

For a single non-degenerate band, n = 1 corresponds to a half-filled band, which typically results in
metallic behaviour. On the other hand, n = 2 indicates a fully filled band, leading to an insulating state
due to the absence of available states for conduction.

Interestingly, it has been experimentally observed in certain transition metal oxides that even at half-
filling (n = 1), the system behaves as an insulator. This insulating state cannot be explained by con-
ventional band theory and is referred to as a Mott insulator. The Mott insulating behavior arises from
strong on-site Coulomb repulsion, which inhibits the hopping of electrons between lattice sites. As a
result, the system becomes insulating despite having a partially filled band. This phenomenon shows the
limitations of non-interacting band theory and its necessary to include the electron-electron interactions.
A minimal theoretical model that captures the essential physics of Mott insulators is the Hubbard model,
which incorporates both the kinetic energy of electrons (via hopping) and as well as the on-site Coulomb
repulsion.

2 The Hubbard model

For our conventional non-interacting Band theory the Hamiltonian that describe the electron delocal-
ization behaviour, is given by

H; = Z (tijCIUng + h.C.) (1)
(ij)o
where c;-ra and ¢;, electron creation and annihilation operator in ¢-th lattice site. They follow typical
fermionic anti-commutation relation. We want to incorporate the on-site Coulomb interaction term to
describe Mott-like phenomena.



The Hubbard Hamiltonian captures both the electron delocalization and interaction, and consists of
two components: a band (kinetic) term and an intra-site Coulomb term. It is given by

H=H;+Hy=- Z (t/[:jc;!-o.cjg + h.C.) + UanTnji, 2)
(ig)o J

Band term Coulomb term
SN
where n 4 = CiyCit-
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Figure 2: Schematic representation of the Hubbard model.

It is important to discuss certain symmetries of the Hubbard Hamiltonian. First is spin-rotation
invariance. For that the only term we have to worry is the Coulomb term since it only interact with two
different spins. One can convert it in spin operators using
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which leads to a spin-rotation invariance from :
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Second one is electron-hole symmetry. As we will see later, it will reflect in phase diagram. We see that
the following transformation from electron field operator to hole field operator:

T

) ) T
Cjo = Cjo,  Cjg = Cj,
Njo —1-— Njo

does not change the form of the Hubbard Hamiltonian.

Exact diagonalization of the Hubbard Hamiltonian is nearly impossible. But two important limiting
cases of the Hubbard model help in understanding its physical behaviour:

1. Band limit (U/t = 0): In this case, the interaction term becomes negligible. The system is
effectively non-interacting and can be diagonalized in momentum space:

d
H=H,= Zskclackg, €L = —Qthos(kia),
ko =1

where d is the spatial dimension and « is the lattice constant.
2. Atomic limit (U/t — oo): Here, the kinetic energy is suppressed and the electrons are localized
due to strong repulsion. The Hamiltonian becomes diagonal in position space:

H=Hy=U3} ldfd};, |d);=cle][0);,
J
where |d) ; represents a doubly occupied site at position j. Between these two limits, the full Hubbard
model cannot be solved exactly in general and remains a central challenge in strongly correlated electron
systems. In the later section we will extensively discuss the limit where U/t is very small, that helps to
describe the Mott transition and Mott insulator.



2.1 Hubbard sub-bands

Although the full Hubbard model cannot be solved exactly in general, certain intuitive features can
still be extracted in specific limits. One such concept is the emergence of Hubbard subbands, particularly
relevant in the strongly interacting system. In the Mott insulating case, where U >> ¢, the kinetic term
H; can be treated as a perturbation over the interaction term Hyy. This provides a basis for understanding
the system in terms of atomic states slightly broadened by hopping.

To build intuition of the Hubbard sub-bands, consider the energy cost of different site occupancies
in the atomic limit: say a singly occupied site corresponds to a state with energy Ey = 0. A doubly
occupied site cost an additional Coulomb energy i.e., For + U = U. So we have two bands at energy
0 and U. When hopping is introduced perturbatively, these atomic levels broaden into bands. The
approximate width of these bands is given by W ~ 2zt, where z is coordination number. Consequently,
two subbands form: a lower Hubbard band centered around £ = 0 and an upper Hubbard band centered
around £ =U.
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Figure 3: Schematic illustration of Hubbard subbands in the strongly interacting limit.

It is significant to point out that its a occupation-number dependent band structure, not the usual band
structure we see in band theory. If L be the number of sites, then the total number of available states is
2L. In Hubbard sub-bands, each band has L states.

2.2 The Hubbard-I decoupling

The emergence of Hubbard sub-bands in the Mott regime can be analytically captured using the
Hubbard-I decoupling scheme. Starting from the Hubbard model, we consider the equations of motion
for the fermionic annihilation operator ¢;,, given by:

WCjg = [Ciaa H] = Ztijcja + Uni,—acia' 4)
J

Decoupling at this stage i.e., n; —¢Cic — (i —o) Cis, and doing Fourier transform will give

1
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which is essentially the same result as obtained from band theory. This once again indicates metallic
behaviour. Thus proceeding one step further:

WNj,—oCic = [ni,—oci07 H}

_ T T
= E tijNi,—oCjo +UNi _oCi o + E tij {Ci’_gcj,—aci,a — ¢ _4Ci,—oCio ©)
J J

and taking a mean-field decoupling and Hubbard 1 approximation we arrive at
WNj —oCig R Z tij (Ni,—o) Cjo + Uni—oCig. (6)
J

Eliminating the composite operator n; _,¢;, from eq. (4) and (6) and transforming to momentum space,
one obtains the energy spectrum as:

_ U+t

T L0 =) aUt(h) (), @)

wy (k)

where t(k) = ¢y, is the single-particle dispersion. At half-filling, (n; _,) = 1/2, and the expression

simplifies to:
1 1
wi(k):g(U—i—ak)ii\/UQ—i-E%. (8)
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Figure 4: Hubbard sub-bands at half-filling. The plot shows the dispersion of the two Hubbard sub-bands
wy (k) and w_(k) as a function of the wavevector k.

These two branches represent the lower and upper Hubbard bands, which are split by an energy gap
of order U at large interaction strength. The formation of these sub-bands signals the breakdown of
metallic behaviour at half filling.

3 Mott-Hubbard Transition

We now consider the system at half-filling, i.e., with electron density n = 1. In the Mott insulating
regime (U > t), electrons primarily occupy the lower Hubbard sub-band, and double occupancy is
energetically restricted. To describe the local excitation, it is useful to define a local basis at each site j



(and corresponding energy in atomic limit):

|0),; : empty site, Hy =0
|T>] - ]T‘O>]’ HU:O
‘U] j¢‘0>]‘a Hy =0
|d); = JT Ji 0);, Hu=U
Note that due to fermionic anti-commutation relation |d),; = ]T ] i 0); # ol i ]T |0),;. Although single

occupancy costs no energy, virtual hopping processes stlll require access to doubly occupied states. For
example, the hopping process

Di by = 10);1d); = 11)i 1)

involves a virtual transition to a doubly occupied state |d> in the upper Hubbard band. Therefore, know-
ing the band gap (~ U) and bandwidth (~ 2zt) is extremely important. As the ratio U/t is decreased, the
separation between the Hubbard sub-bands diminishes due to increasing band broadening. This evolution
is shown schematically in Fig. 5.

Figure 5: Evolution of the Hubbard bands with decreasing U/t. The Fermi level is right in between them
for the half-filling case.

At a critical value of U/t (shown in the middle figure in 5), typically around (U/t) ~ 2z , the lower
and upper Hubbard bands begin to overlap. This marks the Mott-Hubbard transition from an insulating
to a metallic state as virtual hopping process takes place by compensating the Coulomb term with kinetic
term. The density of states at the Fermi level, p(er), increases continuously from zero in the insulating
phase to a finite value in the metallic phase. This transition seems second-order in nature. However, when
long-range Coulomb interactions are taken into account, the transition can become first-order, showing a
discontinuous jump in p(ep).
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Figure 6: Second order change of density of state in Fermi level with U /¢.



3.1 Phase diagram: U/t vs n

The qualitative features of the Mott-Hubbard transition can be shown in the (U/t, n) parameter
space, as shown in Fig. 7. The diagram exhibits symmetry about half-filling (n = 1), which arises
from electron-hole symmetry inherent in the Hubbard model, as discussed before. At exact half-filling
i.e., n = 1, the system undergoes a Mott-Hubbard metal-insulator transition as U/t crosses a critical
threshold (U/t).. Above this critical value, the system is in a Mott insulating state. Interestingly,
the Mott insulator also exhibits long-range antiferromagnetic order due to super-exchange interactions
mediated by virtual hopping. This order disappears away from half-filling as hopping is not restricted by
Hy, where the system behaves as a paramagnetic metal.

U/t
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0

Figure 7: Schematic mean-field phase diagram of cubic lattice in the U/t vs. n plane. Black dot shows
the point of Mott-Hubbard transition.

One may worry that to achieve exact n = 1 is nearly impossible. But near half-filling, the system
exhibits remarkable robustness. Even with slight doping (still n ~ 1), the small number of added carriers,
density of order ~ |n — 1|, can become localized due to disorder, leading to non-conducting behavior.
This phenomenon is related to Anderson localization.

Qualitatively it can be understood why such antiferromagnetic order gives insulating state. Consider
the ground state antiferromagnetic (Neel) ordered state as shown in the figure 8. In low energy excitation,
we have an extra |]) current carrying electron trying to hop through the Neel ordered state. But it can
not hop in either side because of the Pauli’s excursion principle. Thus strongly antiferromagnetic order
protect the insulating behaviour of the system.
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Figure 8: Current carrying electron hopping through a Neel ordered state.

4 Solving the Hubbard Model: Large U/t Limit

In the large U/t limit of the Hubbard Hamiltonian H = Hy + Hy, the H; acts as perturbation over
Hy. In zeroth order of ¢, we have atomic limit and corresponding two band separated by energy U.
But the hopping term in the Hubbard Hamiltonian mixes states from different sub-bands, namely, the



lower and upper Hubbard bands by virtual hopping of electrons. To analyse the low-energy excitation
while preventing such mixing, we perform a canonical transformation that decouples these bands up to
a desired order in ¢ /U. Canonical transformation is nothing but a unitary rotation over the Hilbert space
of the problem such that we achieve our goal. The idea of canonical transformation here is as follows:
We do a canonical transformation such that the basis state does not mix in upto order ~ ¢ which gives
the ¢ — .J model, further correction can be made step by step upto order ~ ¢2 then ~ 3 etc.

We begin by introducing projection operators for the local Hilbert space at site j:

Pjo =10); (0]; = (1 = nyt)(1 —nyy)
Pjy = ‘T>j <ﬂj = n;t(1 —nyy)

Py =) (Hy =mnj(1 = ngy)

Pja = [d); (d|; = njnjy

By using the projection operator we categorize all possible local excitation dictated by H; in three cate-
gories: one where total number of doubly occupied state increases, one where it decreases and one where
it remain same.

The hopping term H; is then partitioned into three components:

Hy, = H;" + H; + H ©
where:

. HtJr : increases the number of doubly occupied states (e.g.,

i) = 10);1d) ),
0)i [d); = 1) 14) ),
1:10); = [0);1);, or [1); |d); —

* H, : decreases the number of doubly occupied states (e.g.,

 H): preserves the number of doubly occupied states (e.g.,

[d); 11))-

The exact form of these Hamiltonian is given below:

Hg_ =—1 Z Z ’rAli_JCIJCjU(l - ﬁj_g) + ﬁj—gc‘l“acio—(l - ’fli-o‘)}
(ig) o

Hti = —t Z Z (]_ — ’fLi,U)C}LUCjUﬁjU + (1 - ﬁj,g)c;r-gcwﬁw}
(i) o

Hto = —¢ Z Z (1 — ﬁifg)cjacj‘g(l — ﬁjfg) + ’ﬁifgcjocj'gﬁjfg + h.C.]
(ij) o

The goal is to perform a canonical (unitary) transformation to get an effective Hamiltonian, of the
form:

Hus = e He ™ (10)

with the generator S = —%(H;r — H, "), carefully chosen to eliminate mixing between the Hubbard
sub-bands to leading order in ¢. Expanding to second order using the BCH formula, we obtain:
Z'Q

1
%HE+HU+E[H;F,H[] +-



There are no terms upto order ~ ¢ in the which increase or decrease the number of doubly occupied state
occurs, so the desires goal to decouple the bands is achieved.
The commutator [H,", H; ] generates an effective spin interaction. One can identify that as:
- 12

202 [ 1
[H H ] — Nid (Si S5 — 4nmj> + Three-sites term(~ 5) (11

Neglecting the Three-sites term, this yields the effective low-energy model known as the ¢-J model:
eff——tz (1—n;— cwcﬂ,(l —Nj o)

4¢>
i h = — 12
+JZ<S S nn]) where J i (12)

(i)

. I . . 2

Further one should aware of the 3-sites term of the Hamiltonian as it comes with order ~ % The
excitations are as shown in fig. 9. The cost we have to pay to eliminate H;“ -+ H, term by the canonical
transformation is generating new mixing terms by 3-sites hopping shown in fig. 9b.
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Figure 9: Two figure shows 3-sites hopping process in the effective hamiltonian.

The ¢-J model effectively captures the interplay of charge motion and spin correlations in the large-
U regime of the Hubbard model. It becomes particularly relevant for studying doped Mott insulators and
strongly correlated electron systems.

5 The t-J model

The t—J model derived via a canonical transformation from the Hubbard model captures the low-
energy physics in the large-U regime by excluding virtual states involving doubly occupied sites up order
~ t. In this approximation, higher-order exchange processes — such as three-site or ring exchanges —
are neglected. These processes would involve intermediate states like |d) (doubly occupied sites), which
are absent in the second-order effective theory.

To account for these contributions, one can consider a more refined canonical transformation includ-
ing higher-order terms. For instance, the generator may be expanded as S = —%(H;r —H )+ S ),
where S is constructed to eliminate mixing of states involving double occupancy at higher orders.

At half-filling (n;, = 1), the charge degrees of freedom are frozen due to the strong on-site repulsion,
and the effective low-energy Hamiltonian reduces to a pure antiferromagnetic model:

Ha= 735§,
(ig)



which describes an antiferromagnetic Heisenberg model with exchange interaction .J = 4t2 /U.

This kinetic exchange mechanism energetically favours antiferromagnetic alignment of neighbouring
spins with energy gain associated with such superexchange interactions scales as —t? /U and results in a
singlet ground state. Also on can argue that, for ferromagnetic ground state there is no virtual hopping
(of the form [1); [); — [0); |d); — [{); 1)) with the neighbourhood due to Pauli’s excursion principle.
But for antiferromagnetic ground state virtual hopping is possible, associate to which the second order
perturbative energy gain is ~ —t2/U where U is the energy difference between singly occupied state and
intermediate doubly occupied state. It highlighting the emergence of magnetic order in Mott insulators
even in the absence of explicit spin-spin interactions in the original Hubbard model.

6 Many-Body Approach: Extended Hubbard Model

Here we use many-body approach to arrive at the Hubbard model and an extension of it. Till now we
do not explicitly include the long-range Coulomb interactions in our system. Incorporating the effects of
long-range Coulomb interactions and beyond nearest-neighbour hopping leads us to the extended Hub-
bard model, where the total Hamiltonian can be expressed as H = Hy, + Hcoulomb, With the tight-binding
part Hy, describing single-particle hopping and Houiomb representing electron-electron interactions.

In tight-binding model the electronic states are expanded in terms of localized Wannier functions
®,, (1), centered at lattice sites g;, which are constructed as a superposition of Bloch functions:

1 ,
Py (r—gi) = Py, 0(r) = NG Ze—lk9i¢k7a(r). (13)
k

For single-band system this Wannier function approximately same as the localized orbital wave function.
The field operator can then be expressed in either momentum or real space as

PE) = bk ()ch, =D @5 (r)el,, (14)
k 9i

where the operators ¢; , and c;-r . obey standard fermionic anti-commutation relations.
The one-body (tight-binding) Hamiltonian takes the form

Hyy = Z/dr I (r)Hypto (r) = — Z tijczgcjg + eang, (15)
o 7;75.7'»0' jo

where ¢;; denotes the hopping amplitude between sites ¢ and j, and € is the on-site energy.
The interaction part of the Hamiltonian, H ), originates from the two-body Coulomb repulsion:

H(Q) = Z // dri d?“g,'(ﬁ;l (Tl)wlz (7“2)Hcoulombw02 (T2)¢U1 (7"1)

701,02
= Z Z V(glagjvgkvgl) Cjalc;U2ClO'QCkO'17 (16)
ijkl 01,02
where
o2
V(91, 92,93, 94) = /dﬁ /dTQ ®*(ry — g1)@"(r2 — 92)m<1>(7‘1 — 93)®(r2 — g4).

This two-body Hamiltonian can be decomposed into several contributions:

10



* Hy;: Intra-site Coulomb repulsion, corresponding to the standard Hubbard term,
* Hy: Inter-site Coulomb repulsion between electrons at different sites,

* Hp: Direct exchange interactions,

* Hx: Density-dependent hopping processes,

* Hy: Simultaneous (correlated) hopping processes.

The exact expressions of these terms are as follows:

Hy = UanTnji, (17a)
j

Hy =V > figy oy, (17b)

<7”J> 01,02
O 1, .

Hp=FY >l cl cigycjo, =—2FY" (SZ- LS+ 4nmj> (17¢)
(i,) 1,02 (i:d)

Hy = X 305" (chyeso + hec.) (i +5-0) (17d)
(i) ©

Hy =Y Z (CITCLCNCJ-T + h.c.) (17e)

(,9)

Thus our final form of Hamiltonian is H = Hyypbard + Hyv + Hr + Hx + Hy . These additional features
enrich the physics of the model significantly allows several other meaningful contributions.

7 Hubbard Model: Orbital Ordering and Orbital Degeneracy

We now extend the Hubbard model to include two orbitals per site, labeled a and b, with orbital
wave-functions ®¢ and (IDi-’U, and corresponding fermionic operators CIM and cjb - We assume that there
is no mixing between orbitals during hopping.

To capture the relevant physics, we consider a simplified two-site, two-orbital Hubbard Hamiltonian
composed of three parts - hopping part, interacting part and spin-flipping part as follows:

Hiop = =3 [ta (Claraao +0e) + 1y (clypems + )| (18a)
2 i )
Hiy = Z Uanjarnijal + Upnjprnip, + Uy Z Njacy Mjboy — 2J ( a5y — 4>] ) (18b)
j=1 01,02
2
Hygip = —JZ (c}achaic;bicij + C}aicjaTC;chjbi) , (18¢)
=1

where S]Z»a = %(njaT —Njq ). The total Hamiltonian is given by H = Hyop + Hin + Hyip. A key physical
insight is that the direct exchange interaction between two orthogonal orbitals on the same atom tends to
favour a spin-triplet configuration as the lowest energy state, in accordance with Hund’s rule. This leads
to the coefficient —2.J of the forth term in Hjy. The coefficient —J in Hp;, comes from spin rotation
invariance of the system.

11



At half-filling (n = 1), different hopping channels lead to different ground state preferences depend-
ing on the orbitals involved. For intra-orbital hopping in the a-orbital channel, the Hamiltonian is given
by

2
Hy = =" ta (lagt2ar +0e) + 3 Uanjatnjas (19)
o Jj=1

so virtual hopping processes lead to a spin-singlet ground state, with an energy gain of approximately

E atq
a,singlet ™~ — .
U,

A similar mechanism operates for the b-orbital channel, yielding

2
Eb,singlet ~ _ng:j-
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Figure 10: Intra-orbital (a-a) hopping favouring singlet state.

However, when electrons occupy different orbitals on neighbouring sites (e.g., a and b), and assuming
Ugup < Ug, Uy, the exchange favours a spin-triplet ground state. The Hamiltonian is given by

1
Ua,b Z Njaocy Njboy — 2J( ja ;b — 4>] (20)

01,02

2
Hyp = Hhop + Z
j=1

The corresponding energy scale is given by

(ta + tb)Q

Eab tri ~ -
Jtriplet U J .
ab —

°© (N7 A @
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Figure 11: Inter-orbital (a-b) hopping favouring triplet state.

This behaviour reveals a correlation between spin and orbital degrees of freedom. The system tends
to develop spin ferromagnetism coexisting with orbital anti-ferromagnetism. Specifically, when neigh-
bouring sites occupy the same orbital, the ground state favours spin singlets; whereas when different
orbitals are involved, the system favours spin triplets. This type of coupled spin-orbital ordering is a
central feature in the physics of multi-orbital Mott systems.

12



8 Mott Transition in Transition Metal Oxides

Mott transitions are a hallmark of strongly correlated electron systems and are experimentally found
in transition metal oxides (TMOs). One of the most well-studied examples is vanadium sesquioxide,
V;,03. The vanadium ion in V,03 is in the 3+ oxidation state, corresponding to an electronic configura-
tion of [Ar]3d2. Due to interatomic interactions, particularly along the crystallographic c-axis (perpen-
dicular to the ab-plane), one of the two d electrons participates in covalent bonding with a neighbouring
vanadium ion. This effectively reduces the system to a half-filled configuration with approximately one
d electron per site — a situation where Mott physics becomes relevant.

Figure 12: The crystal structure of V,03 with sky-blue dots denoting V** and red dots denoting O?~.

The treatment of such systems is difficult due to the presence of d-orbital degeneracy, which adds
an additional orbital degrees of freedom to the already complex system. Experimentally, V,0O3 exhibits
a transition from an antiferromagnetic insulating (AFI) phase to a paramagnetic metallic (PM) phase at
a Neel temperature of approximately Ty ~ 160 K. Interestingly, the metal-insulator transition coin-
cides with the magnetic transition, and the overall transformation is first-order in nature, indicating a
discontinuous change in the system’s electronic structure.
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Figure 13: Temperature-dependent conductivity in V,03, showing an abrupt fall in conductivity thus the
Mott metal-insulator transition.
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The Mott transition in V03 is fundamentally driven by the competition between the electron-
electron interaction strength U and the electronic bandwidth W (or equivalently the hopping ampli-
tude ). When the ratio U/t exceeds a critical threshold, the system favours localization due to strong
Coulomb repulsion, resulting in an insulating state. Conversely, when U/t falls below the critical value,
electrons delocalize and the system becomes metallic.

The ratio U/t can be experimentally tuned by external control parameters such as pressure and chemi-
cal doping. Applying hydrostatic pressure reduces the interatomic distance, thereby increasing the orbital
overlap and increasing the hopping amplitude ¢. As a result, U/t decreases, leading to a suppression of
the insulating phase and a reduction in the Neel temperature. On the other hand, chemical doping with
larger ionic radius impurities (e.g., replacing V with Cr) causes lattice expansion, reduces overlap, de-
creases t, and effectively increases U/t, thereby favouring the insulating phase and enhancing magnetic
order.

Chemical doping, in this context, acts as an analogue to negative pressure. The degree of doping
can be mapped onto an effective pressure scale. The global phase diagram of V,03, as a function of
temperature and control parameters such as pressure or doping concentration, reveals three principal
phases: a paramagnetic metal (PM), a paramagnetic insulator (PI), and an antiferromagnetic insulator
(AFI). The insulator-to-metal transition between the PI and PM phases is first-order and is associated with
a significant change in entropy due to the transition from a localized, entropy-poor state to a delocalized,
entropy-rich state.
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Figure 14: Generic phase diagram of V,0s3 as a function of temperature and external tuning parameter
(pressure or doping), showing the AFI, PI, and PM regions. In left figure, dashed vertical line shows zero
effective pressure.

9 Super-exchange Mechanism

In many transition metal oxides such as V,03, direct hopping between the d orbitals of neighbouring
transition metal cations is strongly suppressed due to spatial separation and orbital symmetry. Instead,
magnetic exchange interactions are mediated indirectly via the p orbitals of oxygen anions in between
them — a mechanism known as super-exchange. This process is a higher-order virtual hopping phe-
nomenon and plays a crucial role in establishing antiferromagnetic ordering in Mott insulating phases
and separating Mott insulator from charge-transfer insulator.
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Figure 15: Diagram of super-exchange mechanism between two transition metal cations mediated via an
intermediate oxygen anion.

To describe the super-exchange process microscopically, we consider a three-band model involving
the transition metal d orbitals and the oxygen p orbitals. The Hamiltonian includes the on-site energies,
hybridization between p and d states, and local Coulomb repulsion terms:

H =¢q Z dwdw +ép ijapﬂf + Z ( pd)ij ijm +h.c. )

1J,001

+ Udd Z naitndil, + Upp D pjttipgy + Upd Y NdioMpjon

_] ’L],U’O’l

where df and p' represent creation operators of electron, €4 and gp denote the onsite energies of the
transition metal d orbitals and oxygen p orbitals respectively, while ¢, represents the hopping amplitude
between them. The interaction terms Ugg, Upyp, and Up,q correspond to Coulomb repulsion on the d sites,
p sites, and between d-p sites, respectively. The above Hamiltonian is in electron representation where
we quantify each energy term in terms of electron. Similarly one can think of a hole representation where
d' and p' represent creation operators of holes, £’s are on-site energies of holes and U’s are described in
similar fashion for holes.

ea+ U—- i
. gIl)mlc
L
A A
Ed _f_ ggole R
ST
(a) (b)

Figure 16: Virtual hopping processes contributing to super-exchange interaction: (a) in the electron
representation and (b) in the hole representation.

The energy scale governing the virtual exchange process is the charge transfer energy, which in the
electron picture is given by
AZEd—Ep-f-Udd,

and in the hole representation, corresponds to
A= é: — Ed,

where the tilde quantities denote effective orbital energies measured relative to the chemical potential in
the hole basis. The resulting kinetic exchange processes are shown in fig. 16 for both electron and hole
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representations. The interplay between Uy and A dictates whether its charge-transfer insulator or Mott
insulator.

The super-exchange interaction favours antiferromagnetic alignment of neighbouring spins due to
the to the energy lowering associated with virtual hopping. This indirect exchange mechanism is central
to understanding long-range magnetic ordering in Mott insulators and plays a key role in the low-energy
physics of correlated transition metal oxides.

9.1 Charge Transfer Insulator vs Mott-Hubbard Insulator

In systems with strong p-d hybridization, two distinct super-exchange pathways emerge depending
on the dominant energy scale—namely, the Hubbard repulsion Uyg or the charge-transfer energy A =
€4 — €p + Uqgq. These two pathways are shown in Fig. 17 in holes representation. Here all U’s represents
holes-holes interaction and ¢ denotes holes hopping.

N
77
WY

€4 4 + E{f E{f + + g{f
i J i J
(a) (b)

Figure 17: Two different super-exchange channels arising from (a) Mott-Hubbard type virtual hopping
and (b) charge-transfer type virtual hopping.

Each super-exchange path contributes to an effective antiferromagnetic exchange coupling, described
in the framework of the ¢-J model. For the Mott-Hubbard pathway (Fig. 17a), the intermediate energy
states after each hopping are: A, Uy, and A. Then the exchange coupling is given by

24 942 12
J = pd Zdd where tgy = pd
VTN, T Uy dd = A

Its effectively a d-d hopping with hopping parameter ¢44. In contrast, for the charge-transfer pathway
(Fig. 17b), the intermediate energy states after each hopping are: A, 2A + U, and A. The exchange
coupling takes the form
4t
Jo =
A2(2A + Upp)

The total effective antiferromagnetic exchange coupling is the sum of the two contributions:

1 1
Jiot = J Jy=t2 [ — 4+ — ).
tot 1+ dd(Udd+A+Upp/2>

The difference between two pathways are clear:

The relative magnitudes of A and Uy determine the nature of the insulating phase. When A > Uy,
the dominant exchange arises from the Mott-Hubbard mechanism. In this limit, the oxygen p orbital acts
as a mere mediator, effectively reducing the problem to a one-band Hubbard model with d-d hopping.
The lowest energy charge excitation in this case involves a d-d charge fluctuation:

p®dm" dw™ — p® "t dw) ™t
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indicating that the system is a Mott-Hubbard insulator. The d(y and d() denote lower and upper sub-band
of d-orbitals respectively.

On the other hand, in the regime A < Uyy, the lowest energy excitation involves a transfer of an
electron from a p orbital to a neighbouring d orbital:

d(l)n pﬁ d(u)n N d(])n p5 d(u)n-l-l7

a trait of a charge transfer insulator. In such materials, the gap is governed not by on-site Coulomb
repulsion, but by the charge-transfer energy A from the oxide to the metal.

9.2 Zaanen-Sawatzky-Allen Phase Diagram

The distinction between Mott-Hubbard and charge-transfer insulators is formalized in the Zaanen-
Sawatzky-Allen (ZSA) phase diagram, shown in Fig. 18. This phase diagram shows the electronic ground
states of transition metal oxides as a function of Uy and A. In the limit Uyy < A, the system behaves
as a Mott-Hubbard insulator, while for A < Uyyq, the charge-transfer nature dominates. The boundary
between these regimes is material-specific, and some exhibit intermediate behaviour. In the zero limit
of Uqq/tpd, as expected, it behaves like metal. On the contrary, the metal-to-insulator boundary is very
sharp.

Upa'/{z:-d

charge-transfer / // /

insulator /
//// // Mott—Hubbard

insulator

Figure 18: ZSA phase diagram showing different correlated insulating phases depending on the relative
values of Ugq and A. Note: Correction in labeling: Upq — Ugq.

A/fpd

10 Dynamical Mean Field Theory

Dynamical Mean Field Theory (DMFT) is a non-perturbative method that enables the exact treat-
ment of local quantum fluctuations in strongly correlated electron systems. A central quantity in finite-
temperature quantum many-body theory is the thermal expectation value of an observable O, defined
as

1
(0) = Tr (e*f“H —nN >0) , @1)
where Z = Tr (e‘ﬂ(H —HN )) is the partition function, 5 = 1/kpT is the inverse temperature, y is the
chemical potential, and N is the particle number operator.
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To describe the dynamics of the system, the single-particle (imaginary time) retarded Green’s func-
tion (also referred to as the propagator) for a fermionic system is introduced as

GE (1) = =if(r) ({cia (7). ], }) , (22)

H e—HT

where ¢;(7) = "7 ¢; is the Heisenberg representation of the annihilation operator. In momentum
space, the retarded Green’s function takes the form

G (1) = —i0() ({cko (), chy 1) - (23)

As an example, consider the non-interacting electron Hamiltonian

Ho =Y E(k) cf, ek, 24)
ko

whose corresponding retarded Green’s function is given by
Gro(T) = —if(7) e FHRT, (25)

The spectral function A;(w), which encodes physical information such as the density of states, is
related to the retarded Green’s function via

Ai(w) = =2 Im GR(w), (26)

where Gg(w) is Green’s function in Frequency domain, arrived from doing Fourier transform of Gﬁ'(T).
The retarded Green’s function can be recovered from the spectral function using the relation

dw' AW

Ghw) = [ A 27)
T w—w +in

For the above non-interacting electron case, the spectral function reduces to a delta function:

Ai(w) = 27 8(w — E(K)). 28)

In general, the spectral function does not consist of delta peaks. In interacting systems, the spectral
weight broadens due to finite lifetimes of excitations. This broadening can be captured by considering a
time-decaying Green’s function of the form

GE(r) = —if(7) e EWIT=T/T (29)
which leads to a Lorentzian spectral function:

2/T
(w— E(k))? + (1/T)*

Ai(w) = -2 Im GR(w) = (30)

In the later discussion on the Hubbard model, we will encounter such spectral broadening arising
from strong correlation effects.
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11 Green’s Function Calculation for Hubbard model in DMFT

The grand-canonical Hubbard Hamiltonian (considering chemical potential term) is given by
Huubbara = U Z njngy + Z (tijcjo.cjo' + h.C.) — i Z(nn + nji) 3D
J (ij)o J
In atomic limit the grand-canonical Hubbard Hamiltonian is given by
Hat = UZTUﬂljJ/ —,uZ(an—FnN). (32)
J J

Calculation of Green’s function gives

Gl (r) = =ib(r) (U7 (i o) + e (1= i) (33)

11,0
and doing Fourier transform we get

(w) _ <ni,—a> + <]- - ni,—a) (34)

Gl .
w—U—-p)+in  w+p+in

it,0

According to the definition given in eq. (26), we arrive at the local spectral function
Aig(w) = (i) 0(w — (U = p)) + (1 = ni, ) 6(w — 1) (35)

This atomic limit gives the two sharp Hubbard sub-bands at an energy difference of U. We expect the
introduction of hopping term will broaden the bands.
The next concern is the band limit of Hubbard Hamiltonian (d-dim. cubic lattice) i.e.,

d
Hygnd = Z(ek — u)czgcka, €L = —QtZ cos(k;a). (36)
ko =1

The Green’s function is given as

1

Gl?a(w) = m

(37

For our calculation we introduce a term called self-energy. In general, for an interacting fermionic
system, the Green’s function consists of the self-energy 3, (w), which encapsulates the effects of many-
body interactions, and the retarded Green’s function is of the form:

1
GR(w) = : 38
ka( ) w—€k+M—EU(W) ( )
It should be noted that the self-energy is assumed to be local (momentum-independent)
Return to the atomic limit case. One can write the Green’s function as
n_ 1—n_
GE = " g
ZZ,U(w) w_(U_M)+ (A)+/J/
1

= (39)

W+ p+ S8 (w)
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where atomic self-energy is given by

n_y(1—n_gy)

Y (w) =Un_y + U? : 40
O'(w) n0'+ W+M—U(1—n_o—) ( )
The Hubbard-1 approximation says the self-energy in (38) is same as the atomic self-energy i.e.,
Uo(w) = X5 (w).
The modified Green’s function thus given by
Giip(w) = : @1
7 w— ek + p— X (w)
Z(k Z - (k
wtp+tws (k) w+p+ws (k)
where the energy dispersion relation is
U 1
wE (k) = ;Ek VU =)+ Ueyn 43)
same as we got in eq. (7), and the spectral weight factors are
+
wr(k)—U(l—n_y)
ZE(k) =+7 44

At exact half-filling n4 = n; = 1/2 (mostly discussed in Mott transition case.) the energy dispersion
gives two lowest Hubbard sub-bands

wf(k):;<U+eki,/U2+s§). (45)

and the gap for one electron excitation (the energy difference between lowest of upper and highest of
lower sub-band) is calculated as

Ap=/(W/2)2 + U2~ W)2 (46)

where W is band gap (for d-dim. cubic lattice W = 4td ). The Mott metal-insulator transition occurs
when two bands start to overlap i.e., Ay ~ 0.

12 Spectral Weight Transfer

For the Hubbard model at half-filling, the Green’s function GkRJ (w) is expressed as the sum of con-
tributions from the two Hubbard sub-bands:
Z4 (k) Zy (k)

Gi(w) = + =
ko () wHptwtk)  wop+ws (k)

where energy dispersion relations w_ (k) and w (k) correspond to the lower and upper Hubbard bands,
respectively. The spectral weight factors ZF (k) which reflects the distribution of states at a given energy,
varies with the ratio U/t, where U is the on-site interaction strength and ¢ is the hopping amplitude. A
more accurate model using Hubbard-1II approximationcan give more realistic energy dispersion relations
and spectral weights.
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We found that as U/t increases, there is a noticeable transfer of spectral weight from the central
quasiparticle peak to the "wings" of the spectrum. This behavior is illustrated in Figure 1, where the
spectral function exhibits a three-peak structure. The central peak, corresponding to the quasiparticle
excitation at the Fermi level, diminishes in weight as U/t is increased. At a critical value of U/¢, the
quasiparticle peak vanishes abruptly, and the density of states at the Fermi energy p(er) drops discon-
tinuously to zero, signaling the onset of a Mott transition.

This transition is first-order in nature, characterized by a sharp change in the spectral weight dis-
tribution. With further increases in U/t, the peaks become increasingly sharp, and ultimately, in the
atomic limit (U/t — o0), the spectral function approaches J-function-like peaks, indicating a complete
localization of charge excitations.

A b aln aln

—un +U/2 U2 0 +UR U2 +U/2

= U/t

Figure 19: Spectral weight transfer in the Hubbard model. The figure shows the spectral function at
various values of U/t, illustrating the transfer of weight from the central quasiparticle peak to the wings
as U/t increases.

13 Conclusion

The Hubbard model, despite its simplicity, captures the essential physics of strongly correlated sys-
tems. The transition from delocalized to localized behaviour, driven by electron-electron interactions,
leads to rich phenomena such as the opening of Hubbard sub-bands, spectral weight redistribution, and
orbital ordering. In the strong-coupling limit, effective low-energy models like the ¢-J model reveal
magnetic exchange processes fundamental to transition metal oxides. The inclusion of charge-transfer
effects and orbital degeneracy places real materials in a broader context beyond the single-band Hubbard
model. Finally, DMFT offers an excellent approach to access the full dynamics of the Mott transition,
highlighting the coexistence of quasiparticles. Together these build a understanding of Mott physics
across different regimes.
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